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Abstract       Scale representation is an operation known especially, in the 
field of cartography, where the main objective is to draw the map with a 
certain degree of detail. On such a scale, relief details, for forestlands cannot 
be represented, as graphics resolution of the map is too small. Given the 
density of species and relief variety, the new map permits now representation 
of any trees species and any relief form, watercourses or forests. An easy to 
use and accurate map should prove a good compromise in scale of graphic 
representation and resolution. Resolution of representation in the mapping of 
forestlands increases with the scale of representation only effect of scaling is 
to increase and not to decrease the data imaging.   
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Correlation that exists between the scale and 

resolution representation of a signal is surprised in this 

paper as “multi-resolution theory”, leading to a very 

interesting approach for practical applications. It was 

materialized as a series of analysis-synthesis 

algorithms based on the multi-resolution structure of 

the usual signal space (Prueitt, 1995). To facilitate 

understanding of the construction proposed by Mallat 

(Mallat, 2008) and its generalizations we will present 

briefly some mathematical concepts related to 

orthogonality and projection that confers possibility to 

design different signals on some Hilbert subspaces 

(Hilbert, 2004) with role in deparasiting  unwanted 

perturbations signals as shown below (fig 1). Such a 

signal therefore carries not only useful information but 

also a parasite. Given the density of species and relief 

variety, the new map permits now representation of 

any trees species and any relief form, watercourses or 

forests (Bândiu, 1999). The mathematical model 

presented below identifies both surface acres of forest 

and all the properties required for evaluation. 

 

 

 

Fig1 Satellite picture of a forestland (with parasites) 
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Removing the cloud formations data on the 

amount of timber on a surface can be identified and 

data on existing species on that surface. The 

mathematical model by identifying the wave function 

and insertion of requirements on quantitative and 

qualitative assessment of forest land allow optimization 

and restoring of information with high accuracy 

(Stanomir and Stanasila, 1981). Not all wavelets are 

suitable for a particular application. 

Different applications need different wavelets 

with specified properties for effective and efficient 

processing. In the construction of a wavelet, some 

parameters can be chosen to model the wavelet to 

achieve certain purposes in its processing.  

This paper emphasizes the procedure of 

wavelets construction starting from an orthonormalized 

quadrature mirror filter (QMF) (Jones, 2009).   

In this sub-paragraph an orthonormalized 

filter QMF is noted ( kk ba , ) where { ka } is a 

low-pass filter and { kb } is a high-pass filter. 

Supposing that filter length L > 0 is given by perfect 

reconstruction condition, which 

is





1

0

2
L

l

okll kaa 
than normalization condition is 

given by
.2

1

0







L

l

la
. Combining both conditions an 

equation system is 
( 110 ,...,, Laaa ) and in 

the system there are L are unknown variables and 

( 1
2


L
 ) possible equations. This means that 

1
2


L
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modeling process of wavelets. Ingrid Daubechies 

(Daubechies, 1992) gives a method for constructing an 

orthogonal wavelet filter with compact support {H < 

G} from QMF filters, where H is “low-pass filter” and 

( 110 ,....,, Lbbb ) is “high-pass filter” 

determined of   iL

i

i ab  11
. 

Since then, 

several approaches of optimal wavelets modeling were 

proposed, that relaxed the convergence conditions for 

modeling based on other new criteria. A new class of 

wavelets was modeled with interesting approximation 

properties as wavelets best to represent an. For 

example, Wavelet model “adapted to signal” was 

formulated as semi-infinite linear programming (SIP). 

In optimization theory, semi-infinite programming 

(SIP) is an optimization problem with a finite number 

of variables and an infinite number of constraints, or an 

infinite number of variables and a finite number of 

constraints. In the former case the constraints are 

typically parameterized (Bonnans et al. 2000).  

Parameterizing FIR filters satisfy the 

condition of orthogonalization and normalizing and is 

given by 
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can be obtained and 
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 are 

determined by the following equations  
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the orthonormal filter QMF for L = 4 is represented 

here as an example. 

          ooA  sincos,coscos, 1101 

        1010 sincos,sinsin   

It can be noted that not all orthonormal filters QMF 

generate orthonormaly bases in  RL2

. 

Due to non convergence, Lawton proposed a condition 

necessary and sufficient for the orthonormal filter to 

determine orthonormal wavelets (Lawton, 1991). 

 

 

http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Optimization_problem
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Fig 2 Cleansed (deparasitized) satellite image of a forestland 

 

A simple approach for the wavelet orthonormal 

model based on particular criteria is outlined, as 

follows: 

1. One establishes a criterion for optimal wavelet 

specific requirements based on the 

application. 

2. One generate parameterization for 

orthonormal QMF filter 

3. One optimize the parameters to determine the 

best filter 

4. One checks if the filter optimized check 

condition of Lawton.  

Optimizing satellite images using mathematical 

model of signal reconstruction can be done by 

eliminating the disturbing factors and by identifying 

suitable wavelet.  

 

Conclusions 

 
Images is the main type of data in areas such 

as satellite remote sensing, meteorology, cartography, 

forest management plans, but has a drawback because 

it occupies a large amount and transmission or 

archiving data is made in compressed format. There are 

specific methods of compression / decompression with 

or without loss of information. In compression with 

loss original reports are great so the image will be 

distorted and in for this purpose a large role is played 

by the multiresolution analysis (MRA) or multiscale 

approximation (MSA) of wavelet transforms presented 

above on a specific model.  
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